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Abstract. We study the magnetisation process of the one-dimensional spin-1/2 antiferromagnetic
Heisenberg model with modulated couplings over j = 1, 2, 3 sites. It turns out that the evolution of
magnetisation plateaus depends on j and on the wave number q of the modulation according to the rule
of Oshikawa et al. A mapping of two- and three-leg zig-zag ladders on one-dimensional systems with mod-
ulated couplings yields predictions for the occurrence of magnetization plateaus. The latter are tested by
numerical computations with the DMRG algorithm.

PACS. 75.10.-b General theory and models of magnetic ordering – 75.10.Jm Quantized spin models –
75.45.+j Macroscopic quantum phenomena in magnetic systems

1 Introduction

The formation of gaps and plateaus in the magnetisa-
tion process of one-dimensional (1D) spin-1/2 antiferro-
magnetic Heisenberg models has been studied intensively
during the last years [1–10].

Oshikawa, Yamanaka and Affleck [1] pointed out the
crucial role which play the soft modes, predicted by the
Lieb-Schultz-Mattis (LSM) construction [11]. For example
in the case of the 1D spin-1/2 Hamiltonian with nearest
neighbour couplings and a homogeneous external field B:

H(B) ≡ H1 −BS3(0), (1)

Hj ≡ 2
N∑
l=1

Sl · Sl+j , n = 1, 2, . . ., (2)

Sa(q) ≡
N∑
l=1

eilqSal , a = 1, 2, 3, (3)

the ground state |0〉 has momentum ps = 0, π and total
spin S3

T = ST = NM(B), where M(B) is the magnetisa-
tion.

The LSM construction [11,12] leads to gap-less excited
states |k〉:

|k〉 = Uk|0〉, U ≡ exp

(
−i

2π
N

N∑
l=1

lS3
l

)
, (4)

with momenta

pk = ps + kq3(M), q3(M) ≡ π(1− 2M), (5)
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e.g. for M = 1/4 one finds a four fold degeneracy of
the ground state with momenta pk = ps + kπ/2, k =
0, 1, 2, 3. The magnetisation curve for the system (1) has
no plateaus. The latter appear, if translational invariance
is broken, by adding to (1) a periodic perturbation with
wave vector q, e.g.:

D̄j(q) ≡
1
2

[Dj(q) + Dj(−q)] , (6)

Dj(q) ≡ 2
N∑
l=1

eiqlSl · Sl+j , j = 1, 2, . . . (7)

So far the case j = 1 has been studied in detail [10]. A
pronounced plateau has been found in the magnetisation
curve if the period (q/π = 1/2, 1/6, 1/3) coincides with
the first soft mode (k = 1), q = q3(M) = π(1− 2M), i.e.
a perturbation D̄1(π/2) generates a plateau at M = 1/4.
However, adding to (1) a perturbation D̄1(π) no plateau
has been observed at M = 1/4. In the latter case the sec-
ond soft mode at q = π (k = 2) coincides with the period
of the perturbation. Therefore, the question arises, why
certain possibilities for the formation of plateaus, which
are allowed according to the quantisation rule of Oshikawa
et al. [1], are nevertheless not realized with a given per-
turbation. One possible answer to this question has been
given in reference [10]: The efficiency of the mechanism to
generate a plateau, by means of a periodic perturbation
D1(q), crucially depends on the magnitude of transition
matrix elements 〈n|D1(q)|0〉 from the ground state |0〉 to
the low-lying excited states |n〉. For example for M = 1/4
the transition matrix elements 〈n|D1(π/2)|0〉 turn out to
be large whereas 〈n|D1(π)|0〉 are small. The effect can
be seen directly in the static dimer-dimer structure factor
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〈0|D1(q)D1(−q)|0〉 for M = 1/4 (cf. Fig. 4 in Ref. [10]),
which has a pronounced peak at q = π/2 but no peak for
q = π. Of course all these statements only hold for the
nearest neighbour Hamiltonian (1).

Indeed, Totsuka [3] has recently observed a magneti-
sation plateau at M = 1/4, which was created by adding
to the Hamiltonian (1) a perturbation D̄1(π) and a strong
next-to-nearest neighbour coupling.

In this paper we show that the magnetisation plateau
at M = 1/4 can be realized as well with perturbations of
period q = π, if the perturbation operator is chosen prop-
erly. We will discuss in detail the situation with the opera-
tor D̄2(q) defined in (6). Note, that both operators D̄1(q)
and D̄2(q) have the same momentum- and spin-symmetry
properties; they change the momentum by ±q and do not
change the total spin. They only differ in the isotropic
spin-spin couplings, which extend over nearest neighbours
in D̄1(q) and over next-nearest-neighbours in D̄2(q).

In Section 2 we compare the static structure factors,
Sj ∼ 〈0|Dj(q)Dj(−q)|0〉, j = 1, 2, in the presence of a
magnetic field with magnetisation M = 1/4. In Section 3
we study the magnetisation plateaus induced by the peri-
odic perturbation D̄2(q) at q = π.

The zig zag ladder with two (and three) legs – recently
investigated in reference [13] – can be mapped on a 1D sys-
tem with translation invariant coupling over one and two
(three) lattice spacings and a translation invariance break-
ing coupling of the type D̄2(q). In Section 4 we analyse
the sequence of magnetisation plateaus, which appears in
the zig-zag ladder system.

It should finally be added that the operators and
Hamiltonians refer to periodic boundary-conditions in leg
directions. The DMRG results given in Section 4, how-
ever, have been obtained using open boundary-conditions
along the legs.

2 Signals of soft modes in static structure
factors

In this section we discuss some properties of the static
structure factors 〈0|Dj(q)Dj(−q)|0〉, j = 1, 2, of the
Hamiltonian (1). In order to compute static structure fac-
tors we use periodic boundary conditions and exact Lanc-
zos diagonalizations up to N = 24 sites.

Soft modes, as predicted by the LSM construction, can
be seen directly as zeros in the dispersion curve [10]:

ω(q,M) = E(ps + q, S + 1)−E(ps, S), M = SzT/N,
(8)

where E(p, S) are the lowest energy eigenvalues with total
spin S = ST and momentum p. The ground-state momen-
tum ps in the sector with total spin S is known to be
0 or π [14]. The zeros of (8) – in the limit N → ∞ –
appear at the soft mode momenta q = q(k)(M). For ex-
ample, at M = 1/4 three zeros at q/π = 0, 1/2, 1 emerge
in the dispersion curve for the Hamiltonian (1) (cf. Fig. 3
of Ref. [10]).
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Fig. 1. Comparison of the q-dependence of the static struc-
ture factors (10) at M = 1/4 for the dimer operators (6) over
nearest ((a) j = 1) and next-nearest-neighbour ((b) j = 2) cou-
plings in a model with Hamiltonian (1). The different symbols
belong to system sizes: N = 20 (�), 16 (◦), 12 (•).

The operators Dj(q), j = 1, 2, defined in equation (7),
commute with the total spin squared S2

T and the disper-
sion curve (8) describes the lowest-lying excitations, which
can be reached with these operators. The transition ma-
trix element

〈n|Dj(q)|0〉, j = 1, 2, (9)

from the ground state |0〉 with total spin S = ST and
momentum ps to the excited states |n〉 with momentum
p = ps + q enter in the corresponding static structure
factor:

Sj(q,M) ≡ 1
N

∑
n

(1− δn0)|〈n|Dj(q)|0〉|2. (10)

The signals of the soft modes in the static structure fac-
tor therefore measure the magnitude of the transition ma-
trix elements (9). In Figures 1a and 1b we compare the
q-dependence of the static structure factors Sj(q,M =
1/4). Indeed we observe remarkable differences. We find a
pronounced peak in both structure factors Sj(q, 1/4), j =
1, 2 at the soft mode q(1)(1/4) = π/2. The size of the
peaks, however, differ by an order of magnitude. There
is no peak at the second soft mode q(2)(1/4) = π. Note
the different behaviour of the structure factor. For q → 0:
S1(q, 1/4) converges to zero whereas S2(q, 1/4) approaches
a maximum . 0.3. This feature will play a crucial role, if
we add to (1) a periodic perturbation δ · D̄j(π), j = 1, 2
of strength δ. The perturbation is invariant under trans-
lations by two lattice spacings. Eigenstates of the per-
turbed Hamiltonian are constructed by a superposition
of momentum eigenstates with p = 0 and p = π. The
reduction of the Brillouin zone is taken into account
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Fig. 2. Comparison of the q-dependence of the static struc-
ture factor (12) at M = 1/4 for the dimer operators (11) in a
model with Hamiltonian (1) and perturbation δ ·Dκ

j (π), κ =
0 (•), 1 (◦); j = 1(a), 2(b). The perturbation strength is δ =
0.5, the system sizes are N = 20, 24.

in a modification of the dimer operators:

Dκ
j (q) ≡ 2

N/2−1∑
l=0

eiq2l S2l+κ · S2l+j+κ,

{
j = 1, 2
κ = 0, 1.

(11)

The corresponding structure factors, defined by:

Sκj (q,M) ≡ 1
N

[
〈0|Dκ

j (q)Dκ
j (−q)|0〉 −

∣∣〈0|Dκ
j (q)|0〉

∣∣2] ,
(12)

are symmetric under the mapping q → π − q.
In Figure 2a we present the static structure factor

Sκ1 (q, 1/4), κ = 0, 1 – obtained from the ground state of
the Hamiltonian (1) with perturbation δ · D̄1(π), δ =
0.5. In both structure factors we only find a peak at
q = π/2 but no peak at q = 0, π. The situation for the
static structure factors Sκ2 (q, 1/4), κ = 0, 1 is shown in
Figure 2b. Here the ground state has been computed for
Hamiltonian (1) with a perturbation δ · D̄2(π), δ = 0.5.
Note the different behaviour of the two structure fac-
tors Sκ2 (q, 1/4), κ = 0, 1. S1

2(q, 1/4) has its maximum at
q = 0, π, whereas S2

2(q, 1/4) has a maximum at q = π/2.
We therefore expect that the operator D̄2(π) generates a
plateau atM = 1/4, whereas the operator D̄1(π) does not.

3 Magnetisation plateaus induced by periodic
perturbations

Periodic perturbations of the type D̄j(q) – added to the
nearest neighbour Hamiltonian (1) – generate a charac-
teristic sequence of plateaus in the magnetisation curve.
We dicsuss the same Hamiltonian for which we have com-
puted the static structure factor in Section 2.2. For this
reason we also apply periodic boundary conditions in this
section.
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Fig. 3. Comparison of the plateau evolution in the magnetisa-
tion curves of a model with Hamiltonian (1) and perturbation
δ · D̄j(π), j = 1(a), 2(b), δ = 0.5, 0.6 (from top to bottom).
The solid lines represent the midpoint magnetisation curves,
together with extrapolated values of the upper and lower crit-
ical field BU and BL, respectively, deduced from system sizes
N = 8, 12, . . ., 24.

The possible position of the plateaus is given by the
quantisation rule of Oshikawa et al. [1]. However, whether
or not a plateau really appears, crucially depends on the
type of the perturbation operator. As an example we
compare in Figure 3 the evolution of the magnetisation
plateaus generated by the operators D̄1(π) and D̄2(π).

The magnetisation curves – generated with D̄1(π), cf.
Figure 3 column (a) – show a plateau at M = 0, rapidly
increasing with the strength δ of the perturbation. This is
the well known gap induced by dimerisation. There is no
plateau at M = 1/4 in the whole δ range (0 < δ . 0.7).

In contrast the magnetisation curves – generated with
D̄2(π) (cf. Fig. 3 column (b)) – have no plateau at M = 0.
For δ & 0.4 a plateau appears at M = 1/4. A finite-size
analysis of the plateau width yields the δ-evolution shown
in Figure 4.

Note in particular, the drastic change in the plateau
width at δ = 0.7. This feature is associated with a change
in the ground-state quantum numbers in the fixed SzT-
sectors. For δ < 1/2 all ground states (0 ≤M ≤ 1/2) have
the standard momentum 0, π. The first change happens
in the sector M = 1/2 − 1/N at δ = 1/2, where the
ground state is degenerate with momentum p = 0, π and
p = ±π/2.

For larger values of δ (δ > 1/2) we observe a different
ground-state behaviour in the sectors with:

0 ≤M ≤M0(δ), and M0(δ) ≤M ≤ 1/2. (13)

In the first regime of (13) the ground state has still mo-
mentum p = 0, π. In contrast, in the second regime of (13)
the ground-state momentum alternates between p = 0, π
and p = ±π/2. The magnetisation M0(δ), which separates
the two regimes passes the plateau M = 1/4 exactly at
δ = 0.7.
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Fig. 4. The δ-evolution of the M = 1/4 plateau width ∆(δ) =
BU −BL in a model with Hamiltonian (1) and a perturbation
δ · D̄2(π), deduced from system sizes N = 12, 16, 20, 24.

The plateau structures in the magnetization curves of
chains with periodic perturbations can be seen already on
rather small systems (N ≈ 24).

4 Magnetisation plateaus in zig-zag ladders

The magnetic properties of zig-zag ladders have been re-
cently investigated by Cabra, Honecker and Pujol [13] by
means of bosonization techniques and numerical analysis.
In order to understand the appearance of plateaus in the
magnetisation curve, a mapping of the ladder system onto
a 1D spin chain with couplings over short range distances
is useful. For normal spin ladders with l legs this mapping
leads to couplings over nearest neighbour and to couplings
over l lattice sites [9]. The couplings over l lattice sites ap-
pear along the legs, whereas nearest neighbour couplings
form the rungs of the ladder. At the endpoints of the rungs
nearest neighbour bonds have to vanish to avoid the ap-
pearance of diagonal couplings in the ladder. A Fourier
analysis of the translation invariance breaking terms:∑

q

δqD̄1(q), (14)

leads to a prediction of magnetisation plateaus at:

M = MZ
l ≡

1
2
− Z

l
, (15)

where Z is integer and runs over the sequence

Z =

{
1, 2, 3, . . ., l/2 : l even
1, 2, 3, . . ., (l − 1)/2 : l odd.

(16)

The prediction is based on the assumption that a plateau
only appears if one of the wave vectors q in the Fourier
analysis (14) of the perturbation coincides with the first
soft mode (k = 1).
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Fig. 5. Mapping of the two-leg zig-zag ladder onto a 1D sys-
tem with Hamiltonian (17). The solid lines represent the near-
est neighbour interactions with coupling J1 and the dashed
lines the next-nearest-neighbour interactions with couplings
J2(1± δ).

In the following subsections we consider different re-
alizations of zig-zag spin ladders, which have been dis-
cussed recently by several authors [13,15,16]. We map
those systems to 1D systems with appropriate couplings
over j = 1, 2, 3 neighbours. For some of the following
systems we expect more than one plateau in the mag-
netization curve, therefore we use in this section DMRG
calculations, which also means we apply open boundary
conditions, to get a finer resolution, i.e. more steps in the
finite-size magnetization curves.

4.1 The two-leg zig-zag ladder

The mapping of the two leg zig-zag ladder onto a 1D sys-
tem with short range couplings is shown in Figure 5. The
Hamiltonian can be written as:

H = J1H1 + J2(1 + δ)H+δ + J2(1− δ)H−δ, (17)

H±δ ≡ 2
N∑
l=1

[S4l · S4l±2 + S4l+1 · S4l±2+1] . (18)

The Fourier analysis (14) of the translation invariance
breaking terms yields in this case:

H =
∑
j=1,2

JjHj + δJ2

√
8
N∑
l=1

cos
(
πl

2
− π

4

)
Sl · Sl+2.

(19)

Therefore we expect magnetisation plateaus, if the wave
vector q/π = 1/2, 3/2 meets the first and second soft
mode:

q =
π

2
: M1

4k =
1
2
− 1

4k
, for k = 1, 2, (20)

q =
3π
2

: M3
4k =

1
2
− 3

4k
, for k = 2. (21)

We have looked in particular for plateaus at M3
8 = 1/8

and M1
8 = 3/8 induced by the second soft mode k = 2.

The situation at J1 = 1, J2 = 2 and δ = 0.6, 0.8, 1.0 is
shown in Figure 6, where the emergence of a plateau at
M = 1/8 is visible. The effect disappears if we change the
ratio α = J1/J2 in both directions α < 1/2 and α > 1/2.
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Fig. 6. Magnetisation curve of the two leg zig-zag ladder
with Hamiltonian (19) with couplings: J1 = 1, J2 = 2, δ =
0.6, 0.8, 1.0. The system size is N = 48.
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Fig. 7. Mapping of the three leg zig-zag ladder with periodic
rung couplings onto a 1D system with Hamiltonian (22). The
solid lines represent nearest neighbour interactions with cou-
plings J1, the dashed lines next-nearest-neighbour interactions
with couplings J2, and the dashed-dotted lines interactions
over third neighbour interactions with couplings J3. The dot-
ted lines denote interactions with nearest neighbour couplings
J1, as they are enforced by periodic boundary conditions along
the rungs.

4.2 Three-leg zig-zag ladder with periodic rung
couplings

The mapping of the three-leg zig-zag ladder onto a 1D
system with short range couplings is shown in Figure 7.
The corresponding Hamiltonian can be rewritten as:

H =
∑
j=1,3

JjHj +
2
3
J2

[
H2 − 2

N∑
l=1

cos
(

2π
3
l

)
Sl · Sl+2

]
.

(22)

The last term on the right-hand side breaks the transla-
tion invariance of the 1D system and we therefore expect
magnetisation plateaus for

M1
3 =

1
6
, M1

6 =
1
3
, M2

9 =
7
18
, (23)

if the wave vector q = 2π/3 meets the first (k = 1), second
(k = 2) and third (k = 3) soft mode, respectively.
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Fig. 8. Magnetisation curve of the three leg zig-zag ladder with
periodic rung couplings and Hamiltonian (22) with couplings:
J1 = 1.5, J2 = 1.5. The system size is N = 72. The solid
line is the midpoint magnetisation curve. The behaviour at
the end of the plateaus is extrapolated from data of systems
N = 24, 36, . . ., 96. The finite-size effects are largest in the
region around the upper critical field of the plateaus.

We have computed the magnetisation curves with pe-
riodic rung couplings and open boundary-conditions along
the legs for the following values:

J1 =
3
2
J3, J2 =

3
2
J3, (24)

and system sizes: N = 3 × L, L = 8, 12, 16, 20, 24. It
turns out, that the midpoint extrapolation à la Bonner
and Fisher [17] still shows a surprisingly large finite-size
effects for the open boundary conditions. However, as can
be seen from Figure 8, there is still a clean signal for two
plateaus at M = 1/6 and M = 1/3.

In reference [13], the magnetisation curve has been
computed for the same set of couplings (24), but with dif-
ferent boundary-conditions along the rungs, which they
call periodic boundary-conditions of type A, B or C. No
plateau at all is found for type B, one plateau at M = 1/6
is found for type A and C. This is a first indication that the
formation of plateaus critically depends on the boundary-
conditions along the rungs.

4.3 Three-leg ladder with open rung couplings

The mapping of this system onto a 1D system with short
range couplings can be seen again from Figure 7. We only
have to remove the dotted nearest neighbour bonds, which
implement the periodic rung couplings. This changes the
Hamiltonian in the following manner:

H =
2
3

∑
j=1,2

Jj

[
Hj − 2

N∑
l=1

cos
[

2π
3

(l + 2− j)
]

Sl · Sl+j

]
+ J3H3. (25)



480 The European Physical Journal B

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

M
(B

)

B

Fig. 9. Magnetisation curve of the three leg zig-zag ladder
with open rung and leg couplings and Hamiltonian (25) with
couplings: J1 = J2 = 3/2, J3 = −1. The solid line represents
the midpoint magnetisation, extrapolated from system sizes
N = 24 − 72. The thin line is the magnetisation curve for
N = 48.

The two Hamiltonians (22, 25) differ in the relative weight
of the translation symmetry breaking terms.

It was found already in reference [13] that for the cou-
plings (24) (J1 = 3/2, J2 = 3/2, J3 = 1) the mag-
netisation curve for the Hamiltonian (25) evolves two
pronounced plateaus at M = 1/6 and at M = 1/3 gener-
ated by the first and second soft mode, respectively. This
is confirmed in our computation. Switching from antifer-
romagnetic to ferromagnetic leg coupling (J3 = −1) we
find spontaneous magnetisation at M = 1/6 whereas the
plateau at M = 1/3 disappears (Fig. 9).

4.4 The Kagomé like three spin ladders

This system has been studied recently in reference [15] for
reasons which we explain below. Its couplings are defined
by removing from Figure 7 the middle leg and the dotted
vertical lines. The mapping onto the 1D system with short
range couplings then leads to the Hamiltonian:

H =
2
3

3∑
r=1

JrHr
4
3

(
J1

N∑
l=1

cos
[

2π
3

(l + 1)
]

Sl · Sl+1

+J2

N∑
l=1

cos
[

2π
3
l

]
Sl · Sl+2

+J3

N∑
l=1

cos
[

2π
3

(l − 1)
]

Sl · Sl+3,

)
. (26)

Equation (26) differs from equation (25) in the additional
translation symmetry breaking term over three lattice
spacings. The Kagomé like three leg ladder is interesting
because it shares with the two dimensional Kagomé lat-
tice the property that there is a high density of low-lying
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Fig. 10. Magnetisation curve of the Kagomé like three spin lad-
der with Hamiltonian (26) and couplings: J1 = J2 = 1, J3 =
0.4, 0.6, 1.0. The system size is N = 48 for (a) and (b) and
due to the larger finite-size effects N = 72 for (c). The dashed
lines show the extrapolated positions of the plateau ends de-
duced from Lanczos diagonalizations with periodic boundary
conditions.

singlets. A different Kagomé like three leg ladder system
has been analysed recently by Azaria et al. [18].

The Kagomé lattice itself seems to have a singlet-
triplet gap. The authors of reference [15] tried to find out
whether such a gap (i.e. a plateau at M = 0) exists as
well for the Kagomé like three spin ladder. Extrapolation
from DMRG results for systems up to 120 sites show that
the system is gap-less for values of the leg spin coupling J
in the interval 0.5 < 2J3 < 1.25, J1 = 1/2. Note, that the
translation invariance breaking terms in (26) do not gen-
erate a plateau at M = 0 but at M = 1/6 and M = 1/3.

Our results for fixed couplings J1 = J2 = 1.0
and increasing couplings J3 = 0.4, 0.6, 1.0 are shown in
Figure 10. For J3 = 0.4 we find spontaneous magneti-
sation at M = 1/6. This phenomenon is a consequence
of the Lieb-Mattis theorem [19], as was pointed out by
the authors of reference [15]. In condensed matter physics
this phenomenon is called ferrimagnetism. The magneti-
sation curve for J3 = 0.6 starts with a steep increase at
B = 0 and reaches quickly the plateau at M = 1/6 for
a small value of B ≈ 0.1. Going to larger values of the
coupling J3 = 1.0, the slope of the magnetisation curve
and the plateau width at M = 1/6 are reduced. At the
same time, we expect the appearance of a small plateau
at M = 1/3. Beyond this point the system jumps into
the saturation magnetisation. This phenomenon is called
meta-magnetism [20].

We finally want to give some comments on the strong
finite-size behavior of the presented DMRG calculations
of magnetization curves especially appearing at the up-
per critical fields of the shown magnetization plateaus.
Reanalyzing the 3-leg zig-zag and Kagomé like lad-
ders of this section for system sizes N = 12, 18, 24
and periodic leg boundary conditions applying standard
Lanczos techniques led to a straight affirmation of the pre-
sented extrapolations. It moreover showed that the strong
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finite-size effects at the upper plateau edges are no genuine
additional features but a simple consequence of the open
leg boundary conditions used for the DMRG calculations
(see e.g. plateau boundaries additionally given in Fig. 10).
In addition, the evaluations with periodic leg boundary
conditions could make clear the existence of an additional
plateau (m = 1/3) for the Kagomé like 3-leg ladder shown
in Figure 10c, i.e. J3 = 1.0. Again, at the upper criti-
cal field strong finite-size corrections hinder the identifi-
cation of the m = 1/3 plateau on the basis of the shown
DMRG results. For the two other cases – J3 = 0.4, 0.6
– additional plateaus could be excluded. It remains to
be summarized that evaluations with both types of leg
boundary conditions agree – if possible to obtain – in the
thermodynamic limits of the considered quantities. Peri-
odic boundary conditions, however, show much smaller
and more controlled behavior of finite-size effects while
the open boundary conditions require considerably larger
system sizes for an equal quality of extrapolation.

5 Discussion and conclusions

The Lieb-Schultz-Mattis construction of gap-less excited
states (4) in quasi one-dimensional spin-1/2 quantum spin
systems demands translation invariance and short range
couplings. To our knowledge systems which satisfy these
conditions have no plateaus in their magnetisation curve
for M > 0. In this paper we have studied the effect of
a modulation of the couplings over j = 1, 2, 3 sites (cf.
Eq. (6)) on the magnetisation process.

According to the quantisation rule of Oshikawa et al.,
we expect plateaus if the wave number q of the modula-
tion coincides with one of the momenta of the soft modes
q(k) = kπ(1− 2M), k = 1, 2, . . . We have found, that the
modulation of the nearest neighbour coupling (with the
operator D̄1(q)) generates one plateau at M = 1/2− q/π,
i.e. if q coincides with the first soft mode q(1)(M).

For q = π, the modulation of the nearest neighbour
coupling with the operator D̄1(π) leads to the well-known
singlet-triplet gap, i.e. a plateau at M = 0 – which opens
with the strength δ of the perturbation as δ2/3 [7,21].

The modulation of the next-nearest-neighbour cou-
pling with D̄2(π) does not affect substantially the mag-
netisation process if δ < 0.4. There is neither a plateau at
M = 0 nor at M = 1/4. For δ > 0.4, however, a plateau
opens rapidly at M = 1/4 and shrinks again for δ > 0.7.
We have found that this effect is correlated with a change
in the quantum numbers of the ground state.

Spin ladders with l legs can be mapped on one dimen-
sional systems with modulated short range couplings. Of
course these mappings are not unique. There are many
possibilities to put a ring with nearest neighbour cou-
plings on a ladder in such a way, that each site is passed
once. The links which do not lie on the ring, define further

reaching and modulated couplings. However, these map-
pings become unique, if we postulate that the range of
the couplings is minimal. This means for normal ladders
with l-legs, that the corresponding 1D system only con-
tains modulated nearest neighbour couplings [D̄1(q)] and
(translation invariant) couplings over l lattice sites. Here
magnetisation plateaus appear if the wave vectors q of
the magnetisation plateaus meet the first soft mode. The
situation is different if we map zig-zag ladders on quasi
1D systems. Modulations of the next-nearest-neighbour
couplings [D̄2(q)] emerge, which generate magnetisation
plateaus if the wave vector q of the modulation meets ei-
ther the first or the second soft mode.

Finally, we studied the magnetisation process of three
leg zig-zag ladders with various boundary-conditions along
the rungs. The boundary-conditions change the weight of
the terms which modulate the couplings over one, two
and three lattice spacings in the 1D Hamiltonian. This
again affects the formation of plateaus at M = 1/6 and
M = 1/3, respectively.
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